Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiome ; 11(1): 230, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858205

RESUMEN

BACKGROUND: Shrimp cultured in a biofloc system (BFS) have a lower disease incidence than those farmed in a water exchange system (WES). Although a number of studies have reported that the gut bacterial community induced by BFS is highly associated with shrimp disease resistance, the causal relationship remains unknown. Here, the promotive roles of gut bacterial community induced by BFS in pathogenic Vibrio infection resistance and its potential micro-ecological and physiological mechanisms were investigated by gut bacterial consortium transplantation and synthetic community (SynCom) construction. RESULTS: The BFS induced a more stable and resistant gut bacterial community, and significantly enriched some beneficial bacterial taxa, such as Paracoccus, Ruegeria, Microbacterium, Demequina, and Tenacibaculum. Transplantation of a gut bacterial consortium from BFS shrimp (EnrichBFS) greatly enhanced the stability of the bacterial community and resistance against pathogenic V. parahaemolyticus infection in WES shrimp, while transplantation of a gut bacterial consortium from WES shrimp significantly disrupted the bacterial community and increased pathogen susceptibility in both WES and BFS shrimp. The addition of EnrichBFS in shrimp postlarvae also improved the pathogen resistance through increasing the relative abundances of beneficial bacterial taxa and stability of bacterial community. The corresponding strains of five beneficial bacterial taxa enriched in BFS shrimp were isolated to construct a SynComBFS. The addition of SynComBFS could not only suppress disease development, but also improve shrimp growth, boost the digestive and immune activities, and restore health in diseased shrimp. Furthermore, the strains of SynComBFS well colonized shrimp gut to maintain a high stability of bacterial community. CONCLUSIONS: Our study reveals an important role for native microbiota in protecting shrimp from bacterial pathogens and provides a micro-ecological regulation strategy towards the development of probiotics to ameliorate aquatic animal diseases. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Vibriosis , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Penaeidae/microbiología , Bacterias , Vibriosis/prevención & control , Acuicultura
2.
Water Res ; 241: 120136, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295228

RESUMEN

Single-bleaching powder disinfection is a highly prevalent practice to disinfect source water for marine aquaculture to prevent diseases. However, due to the decay of active chlorine and the presence of disinfectant resistance bacteria (DRB), the effects of bleaching powder on prokaryotic community compositions (PCCs) and function in marine water remain unknown. In the present study, the source water in a canvas pond was treated with the normal dose of bleaching powder, and the impact on PCCs and functional profiles was investigated using 16S rRNA gene amplicon sequencing. The bleaching powder strongly altered the PCCs within 0.5 h, but they began to recover at 16 h, eventually achieving 76% similarity with the initial time at 72 h. This extremely rapid recovery was primarily driven by the decay of Bacillus and the regrowth of Pseudoalteromonas, both of which are DRB. Abundant community not only help PCCs recover but also provide larger functional redundancy than rare community. During the recovery of PCCs, stochastic processes drove the community assembly. After 72 h, five out of seven identified disinfectant resistance genes related to efflux pump systems were highly enriched, primarily in Staphylococcus and Bacillus. However, 15 out of the 16 identified antibiotic resistance genes (ARGs) remained unchanged compared to the initial time, indicating that bleaching powder does not contribute to ARGs removal. Overall, the findings demonstrate that single-bleaching powder disinfection cannot successfully meet the objective of disease prevention in marine aquaculture water due to the extremely rapid recovery of PCCs. Hence, secondary disinfection or novel disinfection strategies should be explored for source water disinfection.


Asunto(s)
Desinfectantes , Microbiota , Purificación del Agua , Agua , Polvos/farmacología , ARN Ribosómico 16S/genética , Desinfectantes/farmacología , Desinfección , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...